
1

Introduction to Database
Systems

CSE 444

Lecture #15
Feb 28 2001

2

Announcement

aProject Report due today
aHW#4 available on the web
`Optional, but you can only benefit from it!

aLecture on March 5
`Given by Vivek Narasayya (my colleague)
`Material included in Finals
`Discussion on Finals postponed to beginning of

lecture on March 7
aWatch posting on mailing list
`Limited exclusion of material

3

Review of Selected
Material

4

Insertion in Extensible
Hash Table

aInsert 1110
0(010)

1(110)

1(011)

i=1 1

1

0
1

5

Insertion in Extensible
Hash Table

aNow insert 1010

aNeed to extend table, split blocks
ai becomes 2

0(010)

1(110), 1(010)

1(011)

i=1 1

1

0
1

6

Insertion in Extensible
Hash Table

aNow insert 1110
0(010)

10(10)

10(11)

i=2 1

2

00
01
10
11

11(10) 2

2

7

Insertion in Extensible
Hash Table

aNow insert 0000, then 0101

aNeed to split block

0(000), 0(101)

0(010)

10(10)

10(11)

i=2 1

2

00
01
10
11

11(10) 2

8

Insertion in Extensible
Hash Table

aAfter splitting the block

00(00)

00(10)

10(10)

10(11)

i=2

2

2

00
01
10
11

11(10) 2

01(01) 2

9

Linear Hash Table
Example

aN=3

(11)00

(01)00

(10)10

i=2

00
01
10

(01)11 BIT FLIP

10

Linear Hash Table
Example

aInsert 1000: overflow blocks…

(11)00

(01)00

(10)10

i=2

00
01
10

(01)11

(10)00

11

Linear Hash Table
Extension

aFrom n=3 to n=4

aOnly need to touch
one block (which one ?)

(11)00

(01)00

(10)10

i=2

00
01
10

(01)11
(01)11

(01)11

i=2

00
01
10

(10)10

(11)00

(01)00

11
12

Compressed BitMaps: Run
Length Encoding

aRepresent sequence of I 0-s followed by 1
as a binary encoding of I
aConcatenate codes for each run together
`But, must be able to recover runs

aScheme
`B_I = #of bits in binary encoding of I
`Represent as B_I – 1 1-s followed by 0 and

then binary encoding of I

3

13

Indexes: Compressed
BitMap

aDecode: (11101101001011)

aRun-Length: (13,0,3): Why?
a0000000000000110001
aNote: Trailing 0-s not recovered

14

Indexes: Multi-column or
Multiple Indexes

aMulti-column index
`On concatenation of field1 and field2
`Asymmetric for B+ Trees

aIndex AND-ing and OR-ing
`For Selection
`For Join

15

Indexing: When are
indexes useful?

aSelect Name, Age
aFrom Person
aWhere Person.salary > 100 K and

Person.state IN [NY, CA, WA]
aGroup By City

Query Execution (Contd.)

Required Reading: 2.3.3-2.3.5, 6.1- 6.7
Suggested Reading: 6.8, 6.9

17

Review of Last Lecture

2-Way Merge Sort
a Each pass we read + write

each page in file.
a N pages in the file => the

number of passes

a So total cost is:

a Improvement: start with
larger runs

a Sort 1GB with 1MB
memory in 10 passes

 = +log2 1N

 ()2 12N Nlog +

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

4

19

Multiway Merge-Sort

aPhase one: load M bytes in memory, sort
`Result: runs of length M/R records

M bytes of main memory
DiskDisk

.
M/R records

Phase Two

aMerge M/B – 1 runs into a new run
aResult: runs have now M/R (M/B – 1) records

M bytes of main memory
DiskDisk

.
Input M/B-1

Input 1

Input 2
. . . .

Output

Phase Three

aMerge M/B – 1 runs into a new run
aResult: runs have now M/R (M/B – 1)2 records

M bytes of main memory
DiskDisk

.
Input M/B

Input 1

Input 2
. . . .

Output

Cost of External Merge
Sort
aNumber of passes:
aThink differently
`Given B = 4KB, M = 64MB, R = 0.1KB
`Pass 1: runs of length M/R = 640000
⌧Have now sorted runs of 640000 records

`Pass 2: runs increase by a factor of M/B – 1 = 16000
⌧Have now sorted runs of 10,240,000,000 = 1010 records

`Pass 3: runs increase by a factor of M/B – 1 = 16000
⌧Have now sorted runs of 1014 records
⌧Nobody has so much data !

aCan sort everything in 2 or 3 passes !

 MNRBM /log1 1/ −+

23

Logical and Physical
Operators

SELECT S.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

Q.city=‘seattle’ AND
Q.phone > ‘5430000’

Query Plan:
• logical tree
• implementation
choice at every
node
• scheduling of
operations

Purchase Person

Buyer=name

City=‘seattle’ phone>’5430000’

buyer

(Simple Nested Loops)

σ

(Table scan) (Index scan)

Some operators are from relational
algebra, and others (e.g., scan, group)
are not. 24

Estimating the Cost of
Operators

aVery important for the optimizer (next
week)
aParameters for a relation R
`B(R) = number of blocks holding R
⌧Meaningful if R is clustered

`T(R) = number of tuples in R
⌧E.g. may need when R is unclustered

`V(R,a) = number of distinct values of the
attribute a

5

25

Scanning Tables

aThe table is clustered
`Table-scan: if we know where the blocks are

aThe table is unclustered (e.g. its records
are placed on blocks with other tables)
`May need one read for each record

aAlso, index scan (discussed later)

26

Sorting While Scanning

aSometimes it is useful to have the output
sorted
aThree ways to scan it sorted:
`If it fits in memory, sort there
`If not, use multiway merging

27

Cost of the Scan Operator

aClustered relation:
`B(R); to sort: 3B(R)

aUnclustered relation
`T(R); to sort: T(R) + 2B(R)

28

One-pass Algorithms

Grouping: γcity, sum(price) (R)
aNeed to store all cities in memory
aAlso store the sum(price) for each city
aBalanced search tree or hash table
aCost: B(R)
aAssumption: number of cities fits in

memory

29

Nested Loop Joins

aBlock-based Nested Loop Join

For each (M-1) blocks bs of S do
for each block br of R do

for each tuple s in bs
for each tuple r in br do

if r and s join then output(r,s)

30

Nested Loop Joins

. . .

. . .

R & S
Hash table for block of S

(k < B-1 pages)

Input buffer for R Output buffer

. . .

Join Result

6

31

Nested Loop Joins

aBlock-based Nested Loop Join
aCost:
`Read S once: cost B(S)
`Outer loop runs B(S)/(M-1) times, and each time

need to read R: costs B(S)B(R)/(M-1)
`Total cost: B(S) + B(S)B(R)/(M-1)

aNotice: it is better to iterate over the smaller
relation first

aR S: R=outer relation, S=inner relation><
32

Two-Pass Algorithms
Based on Sorting

aRecall: multi-way merge sort needs only
two passes !
aAssumption: B(R) <= M2

aCost for sorting: 3B(R)

33

Two-Pass Algorithms
Based on Sorting

Grouping: γcity, sum(price) (R)
aSame as before: sort, then compute the

sum(price) for each group
aAs before: compute sum(price) during the

merge phase.
aTotal cost: 3B(R)
aAssumption: B(R) <= M2

34

Two-Pass Join Algorithms
Based on Sorting
aStart by sorting both R and S on the join

attribute:
`Cost: 4B(R)+4B(S) (because need to write to disk)

aRead both relations in sorted order, match
tuples
`Cost: B(R)+B(S)

aDifficulty: many tuples in R may match many in
S
`If at least one set of tuples fits in M, we are OK
`Otherwise need nested loop
`Total cost: 5B(R)+5B(S)
`Assumption: B(R) <= M2, B(S) <= M2

35

Two-Pass Algorithms
Based on Sorting

Join R S
aIf the number of tuples in R matching

those in S is small (or vice versa) we can
compute the join during the merge phase
aTotal cost: 3B(R)+3B(S)
aAssumption: B(R) + B(S) <= M2

><

36

Query Execution (contd.)
[New Material]

7

37

Two Pass Algorithms
Based on Hashing
aIdea: partition a relation R into buckets, on

disk
aEach bucket has size approx. B(R)/M

aDoes each bucket fit in main memory ?
`Yes if B(R)/M <= M, i.e. B(R) <= M2

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

1

2

B(R)

38

Hash Based Algorithms for
δ

aRecall: δ(R) = duplicate elimination
aStep 1. Partition R into buckets
aStep 2. Apply δ to each bucket (may read

in main memory)
aCost: 3B(R)
aAssumption:B(R) <= M2

39

Hash Based Algorithms for
γ

aRecall: γ(R) = grouping and aggregation
aStep 1. Partition R into buckets
aStep 2. Apply γ to each bucket (may read

in main memory)

aCost: 3B(R)
aAssumption:B(R) <= M2

40

Hash-based Join

aR S
aRecall the main memory hash-based join:
`Scan S, build buckets in main memory
`Then scan R and join

><

41

Partitioned Hash Join

R S
aStep 1:
`Hash S into M buckets
`send all buckets to disk

aStep 2
`Hash R into M buckets
`Send all buckets to disk

aStep 3
`Join every pair of buckets

><

Hash-Join
a Partition both

relations using hash
fn h: R tuples in
partition i will only
match S tuples in
partition i.

� Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

8

43

Partitioned Hash Join

aCost: 3B(R) + 3B(S)
aAssumption: min(B(R), B(S)) <= M2

44

Hybrid Hash Join
Algorithm

aPartition S into k buckets
aBut keep first bucket S1 in memory, k-1

buckets to disk
aPartition R into k buckets
`First bucket R1 is joined immediately with S1

`Other k-1 buckets go to disk
aFinally, join k-1 pairs of buckets:
`(R2,S2), (R3,S3), …, (Rk,Sk)

45

Hybrid Join Algorithm

aHow big should we choose k ?
aAverage bucket size for S is B(S)/k
aNeed to fit B(S)/k + (k-1) blocks in

memory
`B(S)/k + (k-1) <= M
`k slightly smaller than B(S)/M

46

Hybrid Join Algorithm

aHow many I/Os ?
aRecall: cost of partitioned hash join:
`3B(R) + 3B(S)

aNow we save 2 disk operations for one bucket
aRecall there are k buckets
aHence we save 2/k(B(R) + B(S))
aCost: (3-2/k)(B(R) + B(S)) =

(3-2M/B(S))(B(R) + B(S))

47

Indexed Based Algorithms

aRecall that in a clustered index all tuples
with the same value of the key are
clustered on as few blocks as possible

aNote: book uses another term: “clustering
index”. Difference is minor…

a a a a a a a a a a

48

Index Based Selection

aSelection on equality: σa=v(R)
aClustered index on a: cost B(R)/V(R,a)
aUnclustered index on a: cost T(R)/V(R,a)

9

49

Index Based Selection

aExample: B(R) = 2000, T(R) = 100,000, V(R, a)
= 20, compute the cost of σa=v(R)

aCost of table scan:
`If R is clustered: B(R) = 2000 I/Os
`If R is unclustered: T(R) = 100,000 I/Os

aCost of index based selection:
`If index is clustered: B(R)/V(R,a) = 100
`If index is unclustered: T(R)/V(R,a) = 5000

aNotice: when V(R,a) is small, then unclustered
index is useless

50

Index Based Join

aR S
aAssume S has an index on the join attribute
aIterate over R, for each tuple fetch

corresponding tuple(s) from S
aAssume R is clustered. Cost:
`If index is clustered: B(R) + T(R)B(S)/V(S,a)
`If index is unclustered: B(R) + T(R)T(S)/V(S,a)

><

51

Index Based Join

aAssume both R and S have a sorted index
(B+ tree) on the join attribute
aThen perform a merge join (called zig-zag

join)
aCost: B(R) + B(S)

52

Optimization

aAlgebraic laws provide alternative
execution plans
aEstimate costs of alternative modes of

execution
aEfficiently search the space of alternatives
`Simplify search by applying heuristics

(without costing)
⌧apply laws that seem to result in cheaper plans

53

Converting from SQL to
Logical Plans

Select a1, …, an
From R1, …, Rk
Where C

Πa1,…,an(σ C(R1 R2 … Rk))>< >< ><

54

Converting from SQL to
Logical Plans

Select a1, …, an
From R1, …, Rk
Where C
Group by b1, …, bl

Πa1,…,an(γ b1, …, bm, aggs (σ C(R1 R2 …..
Rk)))

>< ><

><

10

55

Algebraic Laws

aCommutative and Associative Laws
`R U S = S U R, R U (S U T) = (R U S) U T
`R ∩ S = S ∩ R, R ∩ (S ∩ T) = (R ∩ S) ∩ T
`R S = S R, R (S T) = (R S)

T

aDistributive Laws
`R (S U T) = (R S) U (R T)

>< >< >< ><
><

><

>< >< ><

56

Algebraic Laws

aLaws involving selection:
` σ C AND C’(R) = σ C(σ C’(R)) = σ C(R) ∩ σ C’(R)
` σ C OR C’(R) = σ C(R) U σ C’(R)
` σ C (R S) = σ C (R) S
⌧When C involves only attributes of R

` σ C (R – S) = σ C (R) – S
` σ C (R U S) = σ C (R) U σ C (S)
` σ C (R ∩ S) = σ C (R) ∩ S

>< ><

57

Algebraic Laws

aExample: R(A, B, C, D), S(E, F, G)
` σ F=3 (R S) = ?
` σ A=5 AND G=9 (R S) = ?

><
D=E

><
D=E

58

Algebraic Laws

aLaws involving projections
` ΠM(R S) = ΠN(ΠP(R) ΠQ(S))
⌧Where N, P, Q are appropriate subsets of

attributes of M

` ΠM(ΠN(R)) = ΠM,N(R)

aExample R(A,B,C,D), S(E, F, G)
` ΠA,B,G(R S) = Π ? (Π?(R) Π?(S))

>< ><

>< ><
D=E

D=E

59

Heuristic: Predicate
Pushdown

Product Company

maker=name

σσσσ price>100 AND city=“Seattle”

pname

Product Company

maker=name

price>100

pname

city=“Seattle”

The earlier we process selections, less tuples we need to manipulate
higher up in the tree (but may cause us to loose an important ordering
of the tuples).

60

Determining Join Order

aSelect-project-join
aPush selections down, pull projections up
aHence: we need to choose the join order
aThis is the main focus of an optimizer

